Donaldson-thomas Invariants of Local Elliptic Surfaces via the Topological Vertex

نویسندگان

  • JIM BRYAN
  • MARTIJN KOOL
چکیده

We compute the Donaldson-Thomas invariants of a local elliptic surface with section. We introduce a new computational technique which is a mixture of motivic and toric methods. This allows us to write the partition function for the invariants in terms of the topological vertex. Utilizing identities for the topological vertex proved in [4], we derive product formulas for the partition functions. The connected version of the partition function is written in terms of Jacobi forms. In the special case where the elliptic surface is a K3 surface, we get a new derivation of the Katz-Klemm-Vafa formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Orbifold Topological Vertex

We define Donaldson-Thomas invariants of Calabi-Yau orbifolds and we develop a topological vertex formalism for computing them. The basic combinatorial object is the orbifold vertex V λμν , a generating function for the number of 3D partitions asymptotic to 2D partitions λ, μ, ν and colored by representations of a finite Abelian group G acting on C. In the case where G ∼= Zn acting on C with tr...

متن کامل

The Donaldson-thomas Theory of K3× E via the Topological Vertex

We give a general overview of the Donaldson-Thomas invariants of elliptic fibrations and their relation to Jacobi forms. We then focus on the specific case of where the fibration is S×E, the product of aK3 surface and an elliptic curve. Oberdieck and Pandharipande conjectured [11] that the partition function of the Gromov-Witten/DonaldsonThomas invariants of S × E is given by minus the reciproc...

متن کامل

Refined open noncommutative Donaldson-Thomas invariants for small crepant resolutions

The aim of this paper is to study analogs of noncommutative DonaldsonThomas invariants corresponding to the refined topological vertex for small crepant resolutions of toric Calabi-Yau 3-folds. We define the invariants using dimer models and provide “wall-crossing” formulas. In particular, we get normalized generating functions which are unchanged under “wall-crossing”. Introduction Donaldson-T...

متن کامل

The Closed Topological Vertex via the Cremona Transform

We compute the local Gromov-Witten invariants of the “closed vertex”, that is, a configuration of three P’s meeting in a single triple point in a Calabi-Yau threefold. The method is to express the local invariants of the vertex in terms of ordinary Gromov-Witten invariants of a certain blowup of P and then to compute those invariants via the geometry of the Cremona transformation.

متن کامل

Some Results on Forgotten Topological Coindex

The forgotten topological coindex (also called Lanzhou index) is defined for a simple connected graph G as the sum of the terms du2+dv2 over all non-adjacent vertex pairs uv of G, where du denotes the degree of the vertex u in G. In this paper, we present some inequalit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016